
Robust and Efficient Calibration
of Mobile Manipulators

Michael Ferguson
Fetch Robotics Inc.
San Jose, CA 95131

Niharika Arora
Georgia Institute of Technology

Atlanta, GA 30332

Abstract— Calibration is an essential prerequisite to many
mobile manipulation tasks. Mobile manipulators typically have
multiple sensors and at least one actuated kinematic chain
which must be well calibrated. Such calibrations must also be
performed in a robust manner and, ideally, quickly. This paper
presents a calibration system developed for the Fetch mobile
manipulator, which is highly robust and can calibrate the entire
robot in less than two and a half minutes without any operator
interaction. This is significantly faster than existing full-system
calibration systems for mobile manipulators. Having such a
calibration system has also allowed several cost reductions and
simplifications in the robot design which are also discussed.

I. INTRODUCTION
For many mobile manipulation tasks to be successfully

performed the sensors and kinematic chains of a robot must
be well calibrated. Only with proper calibration can sen-
sor data be effortlessly transformed between the coordinate
frames of the manipulator and the coordinate frames of the
sensor. For robots with multiple sensors, each sensor must be
well calibrated with respect to the other sensors if attempts
at sensor fusion are to be made.

A number of systems have been proposed for the cali-
bration of mobile manipulators, several with available open-
source implementations. However, these systems tend to be
crippled by one or more of the following issues:

• An inability to generalize across sensors and platforms.
Many calibration systems are carefully designed or
heavily tuned around a particular set of sensors and are
unable to generalize beyond those sensors.

• Slow calibration times. The calibration system built for
the PR2 robot [1] often takes as much as 45 minutes
to calibrate the robot, with half of that time spent
collecting calibration data, and half spent doing the
actual optimization.

• Lack of robustness. Frequently, these calibration sys-
tems have issues which cause them to fail to get
a “good” calibration on each attempt, which can be
particularly detrimental when the calibration takes a
significant amount of time to redo.

Our system of calibration consists of two major phases:
capturing data about calibration targets which indirectly gives
us information about the kinematics and sensors, and then
optimizing the parameters of the system so as to minimize
the errors between sensor and kinematic alignment.

During the capture phase, the robot moves to each of
several dozen pre-defined poses. Each pose puts the robot

Fig. 1. The Fetch mobile manipulator for which this calibration system
was initially designed. The robot comprises a 7-degree of freedom arm, pan
and tilt head, torso lift joint, and RGB-D depth camera which must all be
calibrated.

joints into a particular configuration and makes sure the
sensors are pointing at the desired calibration target. The
position of the robot joints are recorded along with the
detected pose(s) of the calibration target.

During the optimization phase, we re-project the expected
position of the calibration target through each of the kine-
matic chains and sensors. The difference between these
measurements form a residual error over which optimization
can be performed. Our system is capable of handling multiple
types of parameters, including the offsets in the joint angles,
offsets in the location of kinematic frames, camera intrinsics
and extrinsics. In addition to these standard parameters, we
also optimize some of the parameters of various drivers, such
as the Z-offset and Z-scaling parameters of the Primesense
camera drivers.



For the Fetch robot, we use a set of four LEDs in the
gripper as a calibration target, viewing them from the head
camera. The automated data capture routine can be com-
pleted in as few as 2.5 minutes, followed by an optimization
that typically runs in less than a second. The resulting cal-
ibration typically has less than three millimeters of residual
error, and failure to reach this threshold is exceedingly rare
at less than 1 in 100 calibrations.

The following sections of this paper discuss related work,
followed by a discussion of the generic calibration system
that we have built. We then discuss how this is specifically
applied to the Fetch robot, followed by detailed experimental
results from several robots.

II. RELATED WORK

There has been significant interest in calibration of mobile
manipulators. In [2], Bennett and Hollerbach have cali-
brated mobile manipulators by forming them into closed
kinematic chains. Puskorius and Feldkamp modified the
Denavit-Hartenberg coordinates of the Merlin robot and have
minimized the errors in the robot-vision model using iterative
least-squares [3]. Daniilidis et al. use dual quaternions for
efficient hand-eye calibration and compute the transformation
between the robots coordinate frame and the sensor [4].
More recently, Pradeep et al. [1] have presented a calibration
system designed for the PR2 robot, previously developed by
Willow Garage. The PR2 consists of two arms, and several
sensors, most on articulated kinematic chains. The primary
contribution of their work is a complete formulation of the
system such that the calibration is aware of covariances of
different sensor models. They formulate the problem using a
bundle adjustment approach. Unnikrishnan et al. use a plane
constraint to solve the calibration problem between a laser
range finder and a camera [5].

RGB-D cameras, such as the Microsoft Kinect [6], which
combine a depth camera and color camera are one of the
most commonly used sensors on modern mobile manipula-
tors. The most common way of calibrating RGB-D cameras
is by using a patterned flat surface, usually a checkerboard
[7]. These calibrations usually need a human holding the
checkerboard or human intervention to connect the checker-
board to the robot end effector [8]. We propose a method
which calibrates the robot and the intrinsic parameters of
its RGB-D sensor without using a checkerboard. In [9],
Teichman et al. propose a supervised learning approach for
the depth sensor calibration problem within a simultaneous
localization and mapping (SLAM) framework. In [10], Zhang
and Zhang calibrate the depth and colour streams separately
to make the calibration more accurate. Significant work has
been focused on distortion correction in the depth sensor,
typically by way of creating new distortion models besides
the typical pinhole camera model [8] [11].

Our approach builds on many lessons learned from the
pr2 calibration ROS package, which is the basis of [1]. The
later generalization of pr2 calibration to a robot-agnostic
calibration ROS package, which one of our authors was re-
sponsible for, also yielded many insights into the difficulties

of calibrating mobile manipulators. A major short coming of
the pr2 calibration package was the slow run-time. A typical
calibration involved about 25 minutes of data collection and
an additional 25 minutes of optimization. Additionally, the
package lacked robustness. Even a single bad data capture
could ruin an entire calibration, requiring additional time to
be spent calibrating. Further, during the generalization of
the pr2 calibration to other robots, it was found that the
calibration of the PR2 was typically dominated by having
a well-calibrated tilting laser to which all other sensors and
kinematic chains could be calibrated.

III. CALIBRATION OVERVIEW

Our calibration system is designed to work with the Robot
Operating System (ROS) [12], and is released as a ROS
package. The system consists of two phases: the capture of
calibration target data and the optimization of the kinematic
and other parameters of the robot to minimize the error when
re-projecting the calibration targets through various sensors
and kinematic chains.

A. Capture

During capture, the robot moves its joints through a
series of predefined poses which have been selected as a
representative sample of the positions where calibration is
required to be valid.

Regardless of the type of calibration target used, the
capture phase always records the position of every joint in
the robot at each of the capture poses. Many of the free
parameters used in the optimization will be the tiny offsets
between the position reported as zero by the joint and the
actual zero position which minimizes the re-projection error.

In addition to joint position information, one or more
calibration target detector modules are needed. As a baseline
target detector, we implemented a classical “checkerboard in
the hand” method. With this method, a camera detects the
position of each of the corner points in the checkerboard. The
position of each point is directly measurable by the camera.
We assume that the checkerboard is rigidly attached to the
robotic arm that is moving it through the workspace. Upon
estimating the rigid transformation from the end effector link
to the checkerboard, we can re-project where the checker-
board points should be based on the arm kinematics.

Obviously, one of the limitations of such an approach is
that the transformation between the checkerboard and the
end effector is not known, and must become part of the
free parameters of the system. To avoid this issue, the Fetch
robot includes four LEDs arranged in a rectangular pattern
on the face of the gripper. These LEDs are located at a
known transformation from the end effector frame and can
be individually turned on and off. Our LED calibration target
module cycles the LEDs in succession and monitors the
change in intensity of images before and after the LED is
cycled on or off. We then accumulate a per-pixel value over
several on-off cycles to find where each LED is in the RGB
image.



A later addition to the available set of calibration targets
included adding support for detecting the ground plane. Here,
the head camera is used to find planes which are close
in location and orientation to a true ground plane. It then
samples points that are inliers in this plane. This method,
while requiring some environmental setup, can improve the
calibration, especially at longer ranges, since the arm can
only provide information about the point cloud at a distance
of up to 1 meter.

B. Optimization

The kinematics of the robot are modeled in the URDF
markup language that is standard in ROS. They are designed
such that each of the components is a “link” and each link
is connected to a single parent link by a “joint”. A root
link, called the “base link” is the canonical link to which
all robot links can trace back to. Joints may be either static
transformations or actuated joints. The actuated joints are
modeled by a static transformation followed by an actuated
linear or rotary joint, which has an additional positional offset
which can be calibrated.

Our system uses the CERES [13] optimizer to solve the
re-projection error minimization problem. CERES is based
on creating a “problem” consisting of one or more “free
parameters” and one or more “error blocks” that are created
for each calibration pose. The optimizer will attempt to find
the optimal values for each of the free parameters based on
minimizing the residuals from each of the error blocks.

Within our system, free parameters are fairly straightfor-
ward. These typically consist of joint angle offsets mentioned
above, link offsets which change the static transformation of
the joint models, camera intrinsics such as focal length and
center pixel location, and camera extrinsics which are dealt
with in a manner identical to link offsets.

Error blocks are more involved. For each type of sensor
pairing, we need a new error block which uses the data from
two or more sensors to re-project the target points as detected
by the sensor and compute the residual error between the two
or more re-projections.

For instance, the LED detector captures data from the
head camera sensor and the “arm sensor”. Here, the arm
kinematic chain acts as a virtual sensor which can “measure”
the position of the LEDs through the forward kinematics
of the kinematic chain. For each LED, we use forward
kinematics to find the position of the LED in the base link
frame of the robot. We then re-project the position of the
LED as detected by the head camera and transform this
estimate to the base link frame so that we can compute
the difference between the two estimates, which forms the
“residual” or “error”. This same method works for the
checkerboard calibration, except that there are more corner
points than LEDs. We use the Kinematics and Dynamics
Library (KDL) [14] for computing the forward kinematics
of the robot when evaluating the error blocks.

For the ground plane method, the error block looks quite
different. Here, we can again re-project the points through
the head camera and into the base link frame, but we have

no way to find the full 3-D estimate of the individual points
through the “ground plane”. Instead, we can only compare
the pose of the points against the plane Z=0 in the robot
base link frame. This is not as strong of a constraint as those
created by the LED or checkerboard methods, but especially
helps with longer range issues where the arm cannot reach
and give data.

An important consideration in the above formulation of
the error blocks is that the free parameters consist only of
robot kinematics (such as joint offsets, link offsets, camera
intrinsics/extrinsics) and virtual robot kinematics (the link
connecting a checkerboard to the end effector). The residuals
are therefore directly computed by comparing the different
re-projections. The PR2 calibration used each checkboard
pose as an intermediate against which each re-projection
was compared, however, this required that each checkerboard
(whose exact pose could not be known) was modeled as a
6-degree of freedom set of free parameters. This meant that
adding additional checkerboard poses also added additional
parameters to the calibration problem. The poses of the
checkerboard or LED target points are not modeled as free
parameters in our system, drastically reducing the number of
parameters involved, as well as eliminating a large number
of parameters that are not independent of the others.

C. Updating the Robot Model

As our calibration system is designed to work with ROS,
we must therefore update the ROS-compatible robot model,
which is held in a URDF formatted file. The URDF file
is a plain text XML document, which is easily updated. In
addition to the URDF file, the calibration system exports
YAML files containing the updated camera intrinsics that will
be passed into the camera drivers. Camera parameter drivers
are stored as arguments to ROS launch files. On Fetch, we
store the calibrated URDF, camera calibration YAML, and
updated launch files in the /etc/ros folder and configure
an upstart system job to start the robot drivers with the
proper calibration, ensuring that the system is always running
the correct calibration when users login and start running
commands.

It is important to note that URDF specifies the rotation
angles using roll, pitch, and yaw. This does not work well as
a direct parametrization in the calibration and so we convert
these numbers into angle-axis representations. We note the
three angle-axis numbers as “a”, “b” and “c” in the results
tables later in this paper.

IV. CALIBRATING FETCH

This calibration approach was initially developed for the
Fetch mobile manipulator (figure 1), developed by Fetch
Robotics. The robot has an arm with seven degrees of
freedom, a head with pan and tilt actuators, and a torso lift
actuator which moves the arm and head in relation to the
base of the robot. The head contains a Primesense Carmine
1.09 short range RGB-D camera.

One of the unique aspects of the Fetch design is that each
joint contains an absolute magnetic rotary encoder attached



directly to the joint output. Where many robots use optical
encoders in combination with an optical flag for zeroing, the
absolute magnetic encoder removes the need for joint zeroing
during the power-on phase of the robot. In addition, once
the robot is calibrated, the calibration will not drift due to
missed encoder counts as is a common problem with optical
encoders. This does leave open a question of how to zero
the joint initially. Many robots use a precision alignment
pin, alignment fixture or end stop, Fetch however, forgoes
all of those options and simply relies on the calibration.
The technician assembling the robot aligns the joint by eye,
usually within 2-4 degrees of accuracy. The calibration then
finishes the job by determining the true joint zero for each
of the seven joints of the arm as well as the head pan and
tilt, and the torso joint. Abandoning special alignment pins
or fixtures makes assembly of the robot faster as well as
making in-field repairs easier as technicians will not need to
carry special jigs.

To speed calibration, the gripper contains four calibration
LEDs which are blinked in a pattern, and the depth sensor
is then able to find these LEDs using a simple threshold
algorithm which looks at the transitions. An important re-
quirement for getting a good calibration with the Primesense
sensor turned out to be disabling the auto-exposure so that the
camera would stay “dark”, thus making the LED transitions
larger in magnitude.

A. Configuring Calibration

Our calibration system is highly modular and designed to
be configured via the ROS parameter server. The calibration
poses to capture are stored in ROS message formats within
a ROS bagfile, while the choice of calibration parameters
is stored in YAML formatted files. The YAML file contains
which coordinate frame is the “base link”, which parameters
to use as free parameters and which error blocks to use.

B. Selecting Calibration Parameters

A common issue with other calibration systems is the
inability to freely specify a large number of parameters
without the calibration diverging. Most calibration systems
allow the joint angle offsets to be specified, however few are
able to handle link lengths or other link offsets.

With Fetch, we calibrate each of the seven arm joint
offsets, torso lift joint offset, and the head tilt joint offset.
The interface between the head and the torso is a bracket
formed from sheet metal. While lighter and less expensive
than a machined block, it also has slightly lower precision. In
addition, part and assembly tolerances between the numerous
components in the torso and head can “stack-up”, causing
significant variation between robots. To offset this, our
calibration system does a full 6-degree of freedom calibration
on the pose of the head pan joint relative to the torso link.
This calibrates out any distance or angular offsets that have
accumulated through the tolerance stack-up.

Finally, we calibrate the camera intrinsics and extrinsics.
This consists of a full 6-degree of freedom pose for the head

camera relative to the head tilt link as well as a camera focal
length and optical centers.

In this work, we do not calibrate the distortion parameters
of the camera. As the exact methods of the internal algorithm
of the Primesense sensors is not known, results are inconclu-
sive as to what distortion models are actually robust across a
large number of sensors. With the short-range sensor that we
currently use, the distortion within the 0.35m to 1.4m range
is limited, and is this is the range used for manipulation,
we have not found distortion to be a significant issue. The
distortion does increase drastically at farther ranges, which
presents some issues for using the sensor in applications such
as costmap updating while navigating. For this application,
we have instead chosen to apply specific undistortion within
the navigation software as the sensor is actually outside of
its operating range at 2-3m.

C. Reducing Calibration Time

One of the primary goals of this work was to create a fast
calibration system. Initially, the Fetch robot was calibrated
using approximately 100 robot poses, which took on average
about 8 minutes to capture. While we are typically able to
get enough information about each LED position by cycling
it off-on-off a single time, there are minimum on-times for
each of the LEDs in order assure that the LED is in the
expected state when the camera captures a frame. Therefore,
the time spent in each capture pose is difficult to reduce and
the only reasonable solution to make the system faster was
to reduce the number of poses in which we sample the LED
positions.

To select a better and smaller set of calibration poses,
multiple sets of calibration data were captured across several
Fetch robots using the original 100 robot poses. We then
randomly sampled several sets of 50 poses from the 100
poses used before and ran each of these sets on multiple
robots to find the best calibration pose set. We found that the
calibration yields almost the same result. Moving through 50
poses reduces the capture time to 4 minutes. Finally, we did
the same reducing in samples to only 25 calibration poses,
which achieves similar accuracy of calibration while calibrat-
ing in less than two and half minutes. The following section
shows the results of a number of calibrations performed.

V. EXPERIMENTAL RESULTS

When calibrating robots, there are two primary concerns
with regards to robustness: that the calibration generates
a repeatable offset when run multiple times on a given
robot, and that the calibration across multiple robots has
similar levels of re-projection errors for each parameter being
calibrated.

To evaluate the first criteria, we performed calibration on
an uncalibrated robot 10 times using each of the 25, 50,
and 100 target pose sets. The resulting variance between the
offsets calibrated for each of these runs is shown in Table I.
As can be seen in Table I, with only 25 poses, we achieved
nearly the same accuracy of calibration in less than 2 minutes
and 30 seconds.



PARAMETER 100 POSES 50 POSES 25 POSES
Shoulder Pan Joint 5.0320e-06 7.5581e-06 3.1013e-05
Shoulder Lift Joint 1.3376e-07 1.5067e-07 3.4077e-07
Upperarm Roll Joint 6.7229e-08 3.6189e-07 2.2570e-07
Elbow flex Joint 2.8776e-08 2.4610e-08 9.7493e-08
Forearm Roll Joint 2.6495e-07 2.3193e-07 2.9617e-07
Wrist Flex Joint 2.5105e-08 3.6067e-07 2.9536e-07
Wrist Roll Joint 9.1720e-07 2.9379e-06 3.1101e-06
Head Tilt Joint 1.8179e-07 2.0188e-07 5.8326e-07
Focal Length (fx) 2.2515e-05 6.5977e-05 2.9960e-04
Focal Length (fy) 2.6757e-05 7.4985e-05 4.8629e-04
Center cx 1.8679e-06 8.8966e-06 1.3890e-05
Center cy 1.4155e-05 1.4586e-05 7.8062e-05
Z scaling 8.6054e-06 5.4244e-07 2.4875e-07
Z offset 2.8598e-07 1.8925e-05 9.9514e-05
Camera joint x 9.4526e-06 2.0388e-05 1.0470e-04
Camera joint y 1.7924e-07 1.7102e-07 1.3487e-06
Camera joint z 3.6800e-07 1.5980e-06 2.4063e-06
Camera joint a 5.3193e-07 2.7210e-06 5.2710e-06
Camera joint b 1.0078e-07 6.1291e-07 7.2562e-07
Camera joint c 5.8759e-07 2.8224e-06 8.4924e-06
Head pan joint x 1.0595e-08 4.8795e-09 1.1625e-07
Head pan joint y 7.6362e-08 7.8610e-08 3.7168e-07
Head pan joint z 1.2288e-08 2.9837e-08 1.4326e-08
Head pan joint a 1.4428e-08 1.6043e-08 8.7629e-08
Head pan joint b 7.2910e-08 5.3746e-08 3.6787e-07
Head pan joint c 3.3001e-06 1.0922e-05 4.3827e-05

TABLE I
VARIANCE OF FINAL CALIBRATION PARAMETER VALUE ACROSS 10
CALIBRATIONS FOR ALL JOINT AND SENSOR PARAMETERS BEING

OPTIMIZED. EACH COLUMN IS THE VARIANCE FOR A PARTICULAR

NUMBER OF CAPTURED POSES BEING OPTIMIZED OVER. FOR

COORDINATE FRAME CALIBRATIONS, THE FRAME IS REPRESENTED BY A

TOTAL OF SIX NUMBERS: THE X, Y AND Z OFFSETS, AND THE

ANGLE-AXIS ROTATION DENOTED BY A, B, AND C.

For the second criteria, we performed 10 calibrations
on each of three uncalibrated robots. We again evaluate
the variance of the final calibrated value (the actual mean
calibrated value will be different for each robot). The results
of these calibrations are shown in Table II.

Finally, we evaluate the actual re-projection error of the
LED points through both the arm kinematic chain and the
head camera across multiple robots. The results of this
evaluation are shown in Table III. As can be seen, the typical
re-projection error for each of the LED points is under 3
millimeters throughout the workspace of the arm.

Figure 2 shows the visualization of a typical uncalibrated
robot using the ROS visualization tool, RVIZ. The point
cloud depicts the head camera looking at the gripper. The
pink shade depicts where the camera thinks the gripper is,
which is off by more than 2 cm from where the robot
thinks the gripper is based on the kinematic model. After
calibration, it can be seen from figure 3 that the robot gripper
and the mesh coincide properly, and that the point cloud
blends right into the mesh. This is consistent throughout the
robot workspace, allowing perception and planning to work
together without requiring any sort of visual servoing.

PARAMETER FETCH1 FETCH2 FETCH3
Shoulder Pan Joint 5.0320e-06 5.2546e-05 7.8241e-06
Shoulder Lift Joint 1.3376e-07 1.5427e-04 1.0073e-07
Upperarm Roll Joint 6.7229e-08 3.3959e-05 1.2355e-07
Elbow flex Joint 2.8776e-08 1.4416e-05 3.7454e-08
Forearm Roll Joint 2.6495e-07 5.2288e-07 1.5986e-07
Wrist Flex Joint 2.5105e-08 3.7200e-05 5.1110e-08
Wrist Roll Joint 9.1720e-07 2.9987e-06 1.1503e-06
Head Tilt Joint 1.8179e-07 2.3881e-05 2.0002e-07
Focal Length fx 2.2515e-05 6.8372e-04 2.1232e-05
Focal Length fy 2.6757e-05 8.6287e-04 2.0084e-05
Center cx 1.8679e-06 5.6485e-06 1.4719e-06
Center cy 1.4155e-05 8.7725e-05 1.7352e-05
Z scaling 8.6054e-06 1.9849e-07 1.5411e-06
Z offset 2.8598e-07 6.9011e-06 9.3637e-06
Camera joint x 9.4526e-06 6.5708e-05 7.6847e-06
Camera joint y 1.7924e-07 6.5242e-07 3.4685e-08
Camera joint z 3.6800e-07 7.5355e-08 5.6251e-07
Camera joint a 5.3193e-07 9.7933e-06 4.4715e-07
Camera joint b 1.0078e-07 2.8095e-05 1.4035e-07
Camera joint c 5.8759e-07 1.5675e-06 5.4968e-07
Head pan joint x 1.0595e-08 6.0103e-06 9.9500e-09
Head pan joint y 7.6362e-08 8.2762e-08 1.3644e-07
Head pan joint z 1.2288e-08 1.1491e-05 2.1953e-08
Head pan joint a 1.4428e-08 1.0040e-07 5.4682e-08
Head pan joint b 7.2910e-08 3.5083e-07 1.6987e-08
Head pan joint c 3.3001e-06 1.6960e-05 9.5201e-06

TABLE II
VARIANCE ACROSS 10 CALIBRATIONS ON EACH OF THREE DIFFERENT

ROBOTS FOR ALL JOINT AND SENSOR PARAMETERS BEING

OPTIMIZED.FOR COORDINATE FRAME CALIBRATIONS, THE FRAME IS

REPRESENTED BY A TOTAL OF SIX NUMBERS: THE X, Y AND Z OFFSETS,
AND THE ANGLE-AXIS ROTATION DENOTED BY A, B, AND C.

ROBOT MEAN RE-PROJECTION ERROR
FETCH1 0.00306514m
FETCH2 0.003058239m
FETCH3 0.002360324m
MEAN: 0.002827901m

TABLE III
MEAN ERROR BETWEEN RE-PROJECTING THE LED POINTS THROUGH

THE CALIBRATED ARM KINEMATIC CHAIN AND RE-PROJECTING

THROUGH THE CALIBRATED HEAD CAMERA AND HEAD KINEMATIC

CHAIN.

VI. FUTURE WORK

The current system uses calibration LEDs to detect the
gripper. In the future, we intend to investigate methods for
directly using the mesh of the arm and gripper within the
existing framework. Such methods would provide signifi-
cantly more data per robot pose, possibly further reducing
the number of poses required during the capture phase, which
currently dominates time taken to calibrate.

The extremely fast calibration optimization times also
lend themselves to possible continuous calibration, in which
the robot is always checking and possibly updating the
calibration parameters.



Fig. 2. An uncalibrated robot

Fig. 3. Calibrated robot

VII. CONCLUSIONS

This paper presented a calibration system designed and
developed for the Fetch mobile manipulator. The system was
designed to be extensible to other robots, and provides quick
and repeatable calibrations of multiple kinematic chains and
sensors. It has been used to calibrate dozens of Fetch robots
with great accuracy in a timely manner.

Our system for calibrating mobile manipulators is signifi-
cantly faster and more robust than previous attempts. It rarely
fails to properly calibrate a robot.

We have released our calibration system as the
robot calibration package in ROS, which is available in both
source form (http://github.com/mikeferguson/
robot_calibration) and in pre-built debian packages
available from http://www.ros.org. The configuration
required specifically for the Fetch robot can be found in in
the fetch calibration ROS package, at http://github.
com/fetchrobotics/fetch_ros.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Derek King for his help
in our numerous debugging sessions while developing the
calibration system.

REFERENCES

[1] V. Pradeep, K. Konolige, and E. Berger, “Calibrating a multi-arm
multi-sensor robot: A bundle adjustment approach,” in International
Symposium on Experimental Robotics (ISER), 2010.

[2] D. Bennett and J. Hollerbach, “Autonomous calibration of single-loop
closed kinematic chains formed by manipulators with passive endpoint
constraints,” Robotics and Automation, IEEE Transactions on, vol. 7,
no. 5, pp. 597–606, 1991.

[3] G. Puskorius and L. Feldkamp, “Global calibration of a robot/vision
system,” in Robotics and Automation. Proceedings. 1987 IEEE Inter-
national Conference on, vol. 4, Mar 1987, pp. 190–195.

[4] K. Daniilidis and E. Bayro-Corrochano, “The dual quaternion ap-
proach to hand-eye calibration,” in Pattern Recognition, 1996., Pro-
ceedings of the 13th International Conference on, vol. 1, Aug 1996,
pp. 318–322 vol.1.

[5] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a laser
rangefinder to a camera,” 2005.

[6] “Kinect kinect description,” http://wiki.ros.org/opennilaunch/Tutorials/
IntrinsicCalibration.

[7] A. De la Escalera and J. M. Armingol, “Automatic chessboard detec-
tion for intrinsic and extrinsic camera parameter calibration,” Sensors,
vol. 10, no. 3, pp. 2027–2044, 2010.

[8] D. Herrera C., J. Kannala, and J. Heikkil, “Joint depth and color
camera calibration with distortion correction,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34, no. 10, pp. 2058–
2064, Oct 2012.

[9] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic cali-
bration of depth sensors via slam.” in Robotics: Science and Systems.
Citeseer, 2013.

[10] C. Zhang and Z. Zhang, “Calibration between depth and color sensors
for commodity depth cameras,” in Multimedia and Expo (ICME), 2011
IEEE International Conference on, July 2011, pp. 1–6.

[11] S. Clarkson, J. Wheat, B. Heller, and S. Choppin, “Assessing the
suitability of the microsoft kinect for calculating person specific body
segment parameters,” in Computer Vision-ECCV 2014 Workshops.
Springer, 2014, pp. 372–385.

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot oper-
ating system,” in Open-Source Software workshop of the International
Conference on Robotics and Automation (ICRA), 2009.

[13] S. Agarwal, K. Mierle et al., “Ceres solver,” 2012.
[14] R. Smits, “KDL: Kinematics and Dynamics Library,” http://www.

orocos.org/kdl.


